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It is shown that the computer simulations of Hele-Shaw flows around a wedge reported by Bogoyavlenskiy
and Cotts �Phys. Rev. E 69, 016310 �2004�� do not reproduce with a high degree of accuracy the exact
solutions known for this problem.

DOI: 10.1103/PhysRevE.76.038301 PACS number�s�: 47.15.G�, 47.11.�j, 68.03.�g, 83.50.�v

Recently, Bogoyavlenskiy and Cotts �1� reported com-
puter simulations of pressure driven Hele-Shaw flows where
a more viscous fluid �liquid� advances against a less viscous
fluid �gas� in the presence of a solid obstacle. Among the
various different obstacles considered, they first analyzed the
case of an infinite wedge of angle �, as shown in the left
panel of Fig. 1. The problem of Hele-Shaw flows around a
wedge was previously studied by Cummings �2� and Rich-
ardson �3�, where exact solutions were obtained. However,
the numerical results reported in Ref. �1� for the wedge ge-
ometry differ considerably from the exact solutions obtained
in Ref. �3� for a similar problem. As a possible explanation
for these discrepancies, the authors of Ref. �1� argued that
the problem they considered was somewhat different than
that studied by Richardson �3�. The aim of the present Com-
ment is to show that the exact solutions first obtained in Ref.
�3�, and rederived below with an alternative and more direct
method, correspond precisely to the wedge geometry studied
numerically in Ref. �1�. The degree of discrepancy between
the numerical results presented in Ref. �1� and the exact so-
lutions will also be quantified.

As is well known, the problem of Hele-Shaw flows can be
formulated in terms of conformal mappings. Let z= f�� , t� be
then the conformal mapping that maps the interior of the unit
semicircle in the � complex plane into the physical fluid
domain in the z plane, such that �=0 corresponds to wedge
vertex, at z=0, and �=−1 corresponds to z=�, with the unit
semicircle being mapped to the liquid-gas interface; see Fig.
1. For Hele-Shaw flows the complex potential W�z , t�
=��x ,y , t�+ i��x ,y , t� is such that

��x,y,t� = −
b2

12�
p�x,y,t� , �1�

where p is the fluid pressure, b is the thickness of the Hele-
Shaw cell, and � is the fluid viscosity. In an abuse of nota-
tion, let us write W�� , t��W�f��� , t�. Then the complex po-
tential W�� , t� must be an analytic function within the unit
semicircle and satisfy the following boundary conditions:

Re W = 0 on ��� = 1, �2�

Im W = 0 on � � �− 1,1� , �3�

Re��W� −
ztz̄�

�
� = 0 on ��� = 1. �4�

In the last expression subscripts indicate partial derivatives
and the bar denotes complex conjugate. Equation �2� follows
from the fact that p=0 on the liquid-gas interface, whereas
Eq. �3� ensures that the fluid normal velocity is zero at the
solid surfaces, and Eq. �4� corresponds to the kinematic
boundary condition �4�. Furthermore, it is assumed that far
away from the wedge we have a uniform flow

W�z,t� 	 v�z as �z� → � , �5�

where v� is a real constant.
From the preceding discussion it is clear that the flow

domain in the complex W plane corresponds to the second
quadrant ��0, �	0. It is then easy to verify that the con-
formal mapping from the interior of the unit semicircle in the
� plane into the flow region in the W plane is effected by the
following function:

W��,t� = C
 � − 1

� + 1
� , �6�

where C is a time-dependent parameter to be determined
later. Now, the conformal mapping z= f�� , t� that maps the
real diameter of the unit semicircle into the wedge solid sur-
faces and has the appropriate behavior at �→−1 �corre-
sponding to �z � →�� is given by

f��,t� = Kei� �


1 + �
, �7�

where 
= ��−�� /� and K is a real time-dependent param-
eter to be determined shortly. By analyzing the asymptotic
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FIG. 1. The z plane and � plane used in the analysis.
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behavior of W�� , t� and f�� , t� in the limit �→−1, one easily
finds that condition �5� implies that

C =
v�K

2
. �8�

Similarly, one can show that in order to satisfy Eq. �4� one
must have

K̇ =
2v�

2
 − 1
, �9�

where the overdot denotes time derivative. Integration of the
last equation then yields

K =
2v�t

2
 − 1
. �10�

This determines the remaining parameter K and thus com-
pletes the solution. �I remark, parenthetically, that the map-
ping given by Eqs. �7� and �10� can be obtained as a particu-
lar case of a class of more general solutions found by
Richardson �3�. The alternative method given above, in ad-
dition to being more direct, has the advantage that it is also
suitable to treat Hele-Shaw flows around more complex ob-
stacles, such as the step and needle geometries discussed in
Ref. �1�. The difficulty in such cases, of course, is to find the
appropriate mapping f�� , t�. This problem is currently under
investigation.�

The shape of the free surface can now be obtained by
considering the image of the unit semicircle, �=ei�, 0��
�, under the mapping �7�. After a simple calculation, one
obtains the following parametric equations:

x =
D

2
 − 1

sin��2
 − 1�s�
sin s

, �11�

y =
D

2
 − 1

cos��2
 − 1�s�
sin s

, �12�

where s= ��−�� /2, with 0s�� /2, and

D =
1

2
�2
 − 1�K . �13�

As Eq. �11� indicates, the parameter D represents the perpen-
dicular distance between the asymptote of the free free
boundary and the free boundary at the instant it touched the
vertex; see Fig. 1. Comparing Eqs. �13� and �10� one sees
that D=v�t, as expected, since far away from the wedge the
free surface becomes a flat interface that ought to move with
the flow velocity at infinity. Equations �11�–�13� then show
that the evolution of the interface for the wedge geometry is
described by a similarity solution of the form

y

v�t
= f
 x

v�t
� , �14�

where the function f�x� can in principle be obtained from
Eqs. �11� and �12�.

In Ref. �1�, the authors argue that the solutions for the
wedge geometry studied in Ref. �3� and rederived above
“deal with a boundary condition �at infinity� somewhat dif-
ferent from” the boundary condition they used. The deriva-
tion given above shows clearly that the boundary condition
that is being fixed at infinity for the analytic solutions is
precisely the same boundary condition used in the computer
simulations, namely, a uniform flow far upstream, which in
terms of the velocity potential reads

��x,y,t� 	 v�x as x → − � , �15�

or as given in Eq. �5� in terms of the complex potential.
Hence Eqs. �11� and �12� solve the very mathematical
problem of Hele-Shaw flows around a wedge considered
in Ref. �1�.
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FIG. 2. Contact line velocity vc �normalized to the flow velocity
at infinity v�� as a function of the wedge angle �. The solid line
corresponds to the exact result given in Eq. �16�, whereas the
dashed line is a plot of Eq. �7� of Ref. �1�. The inset shows the
relative error �in percent� between the latter and the former results.
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FIG. 3. The interface shape �normalized to the distance D� for
�=−90° and �=−180°.
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The numerical results reported in Ref. �1� for the wedge
geometry show, however, significant discrepancies from the
exact solutions. For example, it follows from Eqs. �11� and
�12� that the distance rc from the wedge vertex to the point
where the liquid-gas interface meets the solid surface is rc
=D / �2
−1�, so that the velocity vc of the contact point de-
pends on the wedge angle � according to the expression

vc

v�

=
1

2
 − 1
=

1

1 − 2�/�
. �16�

Instead of this simple relationship, a rather complicated for-
mula is proposed in Ref. �1� for the dependence of vc on �;
see Eq. �7� of Ref. �1�. For comparison, I plot in Fig. 2 the
contact line velocity vc as a function of � as predicted by
both the exact result shown in Eq. �16� and the correspond-
ing formula given in Eq. �7� of Ref. �1�. The inset of Fig. 2
shows the relative error between the later and the former
expressions, which ranges from −20 to +27 % as � varies
from −180° to 90°.

The interfaces found numerically in Ref. �1� for the
wedge geometry also show some discrepancies when com-
pared to the analytical solutions. To illustrate this, I plot in
Fig. 3 the free surface �rescaled by the distance D� as given
by Eqs. �11� and �12� for �=−90° and �=−180°. A direct
comparison between this figure and Fig. 4 of Ref. �1� reveals
noticeable differences between the numerical results and the
exact solutions.

As a concluding remark, I should like to point out that the
constructive method used to derive Eqs. �11� and �12� shows
that this is the only possible form of similarity solution for
the wedge geometry. �In terms of analytic functions this cor-
responds to the uniqueness of the solution to the mixed
boundary value problem with given singularities.� Hence any
time-dependent solution with a similarity-solution limit must
tend to Eqs. �11� and �12�. It thus remains unclear why the
similarity solutions found numerically in Ref. �1� are in dis-
agreement with the corresponding analytic solutions.

This work was supported in part by the Brazilian agencies
CNPq, FINEP, and FACEPE through the special programs
PRONEX and CTPETRO.

�1� V. A. Bogoyavlenskiy and E. J. Cotts, Phys. Rev. E 69,
016310 �2004�.

�2� L. J. Cummings, Eur. J. Appl. Math. 10, 547 �1999�.

�3� S. Richardson, Eur. J. Appl. Math. 12, 665 �2001�.
�4� S. Tanveer, Philos. Trans. R. Soc. London, Ser. A 343, 155

�1993�.

COMMENTS PHYSICAL REVIEW E 76, 038301 �2007�

038301-3


